
G-WAN
 Application Server
 (Global-WAN.com's infrastructure)

 Version 5 for Linux
 (tested with Debian and CentOS 32-bit and 64-bit)

User’s Manual

“Simplicity is the ultimate sophistication.”
(Leonardo da Vinci, 1452-1519)

“Today's scientists have substituted mathematics for experiments, and they wander off through
equation after equation, and eventually build a structure which has no relation to reality.”
(Nikola Tesla, 1856-1943)

“The price of reliability is the pursuit of the utmost simplicity.”
(Sir Charles Antony Richard Hoare, 1934-)

“Complexity is the enemy of security.”
(Bruce Schneier, 1963-)

“We become what we do.”
(Pierre Gauthier, 1968-)

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 1/44

G-WAN

This manual has been published to help users understand and use the design and features of
the G-WAN application server.

For comments and suggestions, please contact the authors at http://gwan.ch/

G-WAN powers the TrustLeap Global-WAN security Cloud http://trustleap.ch/

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 2/44

G-WAN

http://gwan.ch/
http://gwan.ch/

Table of Contents

Why G-WAN?... 5
Productivity vs. Performance.. 6
Summary.. 7
I. The web server... 8

Installation and configuration.. 8
Host Aliases.. 9
HTTP Authentication... 9
Log files... 10
Command-line options.. 11
Web Site Optimization (HTML, CSS, Javascript, and pictures)...12
Supported HTTP features... 13
Supported MIME types.. 13
Updating static contents.. 14
Updating servlets (C, C++, etc.).. 14
Default HTML CSS style sheet and HTTP Errors CSS style...15
Disabling Directory Listing... 16
Enabling Static in-memory Caching..16
Enabling or Disabling Timeouts, POST entity size, etc...17

II. Setting-up an IDE... 18
III. Application Server: Dynamic contents...20

Your first C servlet: “301 moved permanently”..20
Sending non-HTTP Replies (JSON, etc.)..22
Dynamic buffers.. 22
Getting GET/POST parameters..23
Getting server “environment” variables...23
Template Engines.. 24
The G-WAN Key-Value Store..25
Using Persistence Pointers... 26
Making Blocking BSD Socket Calls Run Asynchronously...26
Putting it all together... 27
Additional functions... 28
“Pretty” URLs for Dynamic content generation..30
RESTFUL Web services... 30
Caching, Expires Header.. 32
HTTP Compression (gzip and deflate)..32
Scripts execution errors, crashes and debugging...33
G-WAN execution errors, crashes and debugging..33
Web Applications Security... 34

IV. Extending the Joy... 35
A word about interfaces... 35
Servlets... 35
Connection Handlers... 35
Content-Type Handlers... 38
Libraries.. 38
Applets.. 39
Maintenance Scripts.. 39
Extending G-WAN further.. 39

V. Build Your Own Server... 41
Feedback... 42
Usage Terms and Conditions... 43
Copyright notice... 45

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 3/44

G-WAN

Why G-WAN?

I wrote computer software for the past 30 years, starting in assembly language because only
BASIC was available at the time and it quickly show its limits.

As TWD Industries AG's CEO, a company I founded in 1998, I decided to write G-WAN in late
2008 because other servers use cryptic configuration files and programming interfaces, on
the top of requiring a datacenter and a team of sysadmins to merely do basic things.

We needed it to scale vertically to exploit parallelism. We wanted to deploy applications by
running a single executable – and we wanted it to run optimally and safely out-of-the-box.

G-WAN, is a freeware. It is an attempt to fill the gap for those who feel that “productivity
gains” means that developers can waste less time and money – not more and more.

You can contribute with feedback (use cases, bug reports, ideas, code, blogs) and with
support plans. All contributions, as modest as they can be, help to enhance G-WAN.

I believe that G-WAN adds fair value to the field because of its willingness to explore new
directions and its nonpartisan support of competing virtual machines (very few application
servers support competing virtual machines like Oracle's JVM and Microsoft's CLR).

This chart shows G-WAN running many “hello” scripts on a 6-Core Xeon Mac Pro:

ANSI C and C++ achieve this performance without caching. Others require caching to fly that
high. G-WAN caching is disabled by default, but you can enable it globally or on a per request
basis. Whatever your needs, G-WAN makes things easier, faster, and safer.

This manual will tell you how to achieve that, and much more.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 4/44

G-WAN

Productivity vs. Performance

Most organizations don't have enough financial power to enjoy having the choice between
hiring competent C engineers and/or building a datacenter.

Web developers need a prototype to convince others (customers, partners, investors) that
their idea is worth paying for. And here PHP or Java will do the job: the first problem to solve
is not to scale: it is to have something to sell in the first place.

Whether you use PHP, Java or C, G-WAN does it better, faster, and cheaper. But G-WAN is
also easing the collaboration between PHP or Java with C – doing all from one single tool.

G-WAN makes it trivial to implement new network protocols (based on TCP or UDP),
reducing even further the need for installing, configuring and updating a plethora of tools of
varying quality.

This allows you to use each programming language for what it does best – depending on the
task (user-interface might be done better in PHP, but image processing will fly higher in C).

G-WAN has been designed to let developers and engineers focus on their projects rather
than on system and hardware issues:

1. scripts in 17 languages (C/C++, Java, C#, PHP...)
2. near-optimal performance and multicore scalability
3. a low CPU/RAM usage – even under heavy loads
4. a programmable reverse-proxy & elastic load-balancer
5. ease of use: zero-configuration (no configuration files)
6. simple interfaces: 7-line hello.c vs 120-line Nginx module
7. no security breach since the first release in year 2009.

Computers hate complexity almost as much as humans do. G-WAN makes them all a favor in
this matter: to try G-WAN, just uncompress the downloaded archive and execute ./gwan

It took us years to write, test and tune G-WAN. We did it to help yourselves. But we wrote this
documentation and we maintain the http://gwan.ch/ web site to help you too.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 5/44

G-WAN

http://gwan.ch/

Summary

This document consists in the following sections:

I. Web server
II. Setting-up an IDE
III. Dynamic contents
IV. Extending the joy
V. Build your own server

The G-WAN HTTP implementation is probably safer than others for at least two reasons:

– it contains thousands of times less lines of code (it also means less bugs);
– HTTP parsing works without libraries and buffer copies (no more exploits).

These unusual choices also make G-WAN unusually efficient.

With static contents, G-WAN is fast with large files, but, it will really shine with small files: web
servers don’t receive or send data: operating systems do it. So, if you serve a 1 MB file, the
CPU time used by G-WAN is negligible as compared to the time used by the OS kernel to
send data on the network. Result: you hit the limits of the kernel, not of the Web server.

With small static files and HTTP keep-alives (to avoid the TCP handshake bottleneck), like
with dynamic contents (to avoid the disk bottleneck), G-WAN can shine as it does a larger
part of the work – especially on localhost (to remove the network bottleneck).

Optimization is not pointless: it allows you to run more tasks – on less machines, each of
them costing less money.

G-WAN inflates the margin of your business by reducing your fixed costs.

G-WAN fuels the http://gwan.ch/ Web site since its fist public release on June 30th, 2009,
initially on Windows, and six months later on Linux. Since then, no vulnerability was found,
despite constant (and sometimes clever) attacks.

If you find a problem then send us the details so we can take action without delay.

All contributions will receive full credits on G-WAN’s Web site. And because the only goal
pursued here is to make progress, you can count on a prompt reply.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 6/44

G-WAN

http://gwan.ch/

I. The web server

Installation and configuration

To install G-WAN, download it from http:// gwan.ch, copy the compressed archive in a folder of
your disk (like /home/username/gwan), decompress it and run the ./gwan program.

To configure Linux in order to let G-WAN run at full speed read http://gwan.ch/source/ab.c.txt
(Linux and Windows TCP/IP tuning options to use all the potential of your hardware)

Decompressing the archive will create the following sub-directories (only the www sub-folder is
mandatory, all other folders are optional):

/ gwan / 0.0.0.0_8080 / #0.0.0.0 / www for HTML and image files
 | | | / logs for log files

| listening on this | / handlers for Handlers (Chapter 3)
| interface (any) and | / csp for C scripts (Chapter 2)
| port number 8080 | / cert for SSL certificates
| |
| Host name (like domain.com)

where the gwan or IP address (like 192.168.2.4)
executable is (one “#”-prefixed root host and
located several “$”-prefixed virtual hosts)

To test the server, run G-WAN and enter the following URL in a web browser:
http://127.0.0.1:8080/

By default, G-WAN listens on the 8080 non-privileged port, on all interfaces (0.0.0.0).

For each G-WAN listener tied to an interface and port, you will define one single root host
and, optionally, one or several additional virtual hosts:

listener 1: / gwan / 192.168.2.4_80 / #trustleap.ch (root host)
/ $gwan.ch (virtual host)

listener 2: / gwan / 192.168.4.8_80 / #trustleap.com (root host)
/ $gwan.com (virtual host)

A listener receives incoming connections on a given network interface and port number.

A root or virtual host defines a Web site attached to a listener.

Many virtual hosts can be attached to a single listener. The listener finds which virtual host it
must serve by looking at the ‘Host’ HTTP header (required by HTTP/1.1).

If such an HTTP header is not found (or not specified by a HTTP0.9/1.0 client) then the “#”-
prefixed root host of the corresponding listener is used (as HTTP/1.1 clients must specify the
Host header, G-WAN will return the HTTP error 400 if none is found).

Why not use configuration files, like all other HTTP servers? A single source of information (vs.
configuration files and directory names) prevents unnecessary inconsistencies and errors – and
spares you the learning curve needed to become a “specialist” (at merely using a program).

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 7/44

G-WAN

http://127.0.0.1:8080/
http://gwan.ch/source/ab.c.txt
http://gwan.ch/
http://gwan.ch/

Host Aliases

An alias lets you assign additional domain names to an existing (root or virtual) host. Like for
other hosts, you just have to create a folder, but its contents (if any) are ignored:

/ gwan / 192.168.2.4_80/ #gwan.ch (root host)
 / #gwan.ch:gwan.com (alias)

/ #gwan.ch:trustleap.ch (alias)
/ #gwan.ch:trustleap.com (alias)

And, to define an alias for a virtual host:

/ gwan / 192.168.2.4_80/ #gwan.ch (root host)
 / $forum.gwan.ch (virtual host)

/ $forum.gwan.ch:forum.gwan.com (alias)

An alias uses the following syntax: real_host : alias_host

The above will not let you reach contents from the IP address that has been assigned to all those
domain names: G-WAN will always reply “404: Not found” – even if you setup an alias called
#gwan.ch:1.2.3.4. This is because IP addresses are not valid host HTTP headers.

If you want to let G-WAN reach your Web site from its IP address, you have do this:

/ gwan / 192.168.2.4_80/ #1.2.3.4 (root host)
 / #1.2.3.4:gwan.ch (alias)
 / #1.2.3.4:gwan.com (alias)
 / #1.2.3.4:trustleap.ch (alias)

/ #1.2.3.4:trustleap.com (alias)

HTTP Authentication

G-WAN supports the BASIC and DIGEST HTTP authorization schemes (RFC 2617).

The auth_basic.c example shows how to assign passwords to users and URIs. Credentials
can be stored in a G-WAN handler or servlet, a local or remote database, or an LDAP server.
Here is an example how this can be organized:

“acl”: {
“roles”: [

{“name”:”admin”, “description”:”full-access to all”},
{“name”:”guest”, “description”:”restricted-access to all”}

]
“rights”: [

{“uri”:”/?auth_digest”, “auth”:”DIGEST”, “method”:”*”, “role”:”admin”},
{“uri”:”/?auth_basic”, “auth”:”*”, “method”:”GET”, “role”:”guest”}

]
“users”: [

{“name”:”paul”, “role”:”admin”, “HA1”:”a34b...78d1”},
{“name”:”tom”, “role”:”guest”, “HA1”:”962f...eb51”}

]
}

“roles” are profiles associated with “users” to define “rights”: who can access an “uri”, using
which HTTP authorization method (BASIC, DIGEST) and HTTP request method
(GET/POST/PUT, etc.). A star character (wildcard) allows any method.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 8/44

G-WAN

The “HA1” field is the RFC 2617-defined MD5(user:uri:password) hash.

You can define access rights for different applications by defining dedicated “roles” and by
associating any related “uri” to the dedicated “roles”:

Application: shopping
“shop_admin”
“shop_guest”

Application: accounting
“accnt_admin”
“accnt_guest”

To keep things simple, it may help to reduce the number of Web applications used on a single
root or virtual host (use sub-domain DNS entries like forum.gwan.com).

DIGEST (RFC 2617) was designed in 1999 by Verisign (SSL Certificate Authority) and
Microsoft (the SSL CA repository, in charge of CA queries and CA validation). BASIC and
DIGEST are said to be safe only if you delegate your security to SSL certificate providers.

Log files

G-WAN can use traditional (Apache-like) log files. To activate this feature, just create a sub-
folder called /logs for the virtual hosts of your choice. Log files will not be generated/updated
if the folder does not exist (or is renamed to, say, “/_logs”).

There are three different kinds of log files:

• gwan.log global events: startup/shut-down, script loading errors;
• error.log HTTP errors on a per virtual host basis;
• access.log all HTTP requests (and errors) for a virtual host.

G-WAN’s performances are only slightly lower when log files are enabled. The difference is
small (negligible for real-life use) but is noticeable in benchmarks.

Note: You have to stop and restart G-WAN to apply your log files changes.

G-WAN log files are automatically rotated daily at 0:00 (GMT) in order to make it easier to
archive, trace and analyze them. Each file is renamed as follows:

• gwan.log => gwan_yyyy-mm-dd.log

• error.log => error_yyyy-mm-dd.log

• access.log => access_yyyy-mm-dd.log

Where yyyy represents yesterday’s year, mm the month and dd the day.

You can create 'live' ASCII/HTML reports (and save them in the /logs folder) to watch a
summary of G-WAN’s internal performance counters such as uptime, in/out traffic, RAM
levels, number of connections, HTTP requests, script requests, HTTP errors, script errors,
abnormal timeouts (attacks), etc. See the server_report() API call: http://gwan.com/api#report

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 9/44

G-WAN

http://gwan.com/api#report

This function makes G-WAN’s internal performance counters available from C scripts
(Chapter III), allowing your C scripts to log additional events under particular circumstances.

Command-line options

gwan [-b | -d | -g | -k | -r | -t | -v | -w] [argument]

-b enables the TCP_DEFER_ACCEPT option (you are supposed to know what you are doing:
this makes it impossible for G-WAN to reject timeout attacks).

-d daemon mode: gwan will still run after user logged off, but no longer output text in the
terminal. Another ‘angel’ instance of gwan is run to restart gwan if it stopped. You can
specify a group and/or user to dump root privileges:

gwan -d:group:user
gwan -d:user (here the group used is the default user's group)

If you can’t reach some files (HTML pages, image, CSS files, C scripts) then check the folder
permissions (the account used to run G-WAN must have access to those files – we use the
0644 permission mask and the account ‘www-data’ to run gwan with ‘root’ as the owner of data
files): sudo ./gwan -d:www-data

-g allows you to use -w with more workers than your machine has physical CPU Cores (you are
supposed to know what you are doing: you are most likely wasting CPU and RAM).

-k gracefully stop all running gwan processes (useful to stop gwan when it is running as a
daemon, see the -d option).

gwan uses the Gwan_12345.pid (parent) and gwan_23456.pid (child) files to find the processes
to kill. If they don’t exist or are not reachable then gwan will say: “no gwan instance found” and
it will fail to stop the running daemon.

In that case, kill the gwan processes by using: sudo killall -r gwan
(type 'man killall' to find how to filter by time, etc.)

-r run the specified C script and exit (no signal handler are installed: a crash will stop this
new instance of gwan which is not acting as a server); This is useful to run arbitrary C
source code (not G-WAN C servlets or handlers):
./gwan -r ab.c (to run the http://gwan.ch/source/ab.c.txt test);

-t stores all client requests in a “./trace” file before they reach the server. This impacts
performance but lets you track attacks.

-v display the version number and build date (also listed in gwan/logs/gwan.log).

-w forces the number of server worker threads (-w 4 will bypass the number of physical CPU
Cores on your machine).

Use -h to get the command line help.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 10/44

G-WAN

Web Site Optimization (HTML, CSS, Javascript, and pictures)

Before HTTP compression, comments and blanks can be waved from HTML, CSS and JS
files to reduce their size. But modifying files requires write access and makes them difficult to
read, forcing people to use two copies: one for edition and one for production.

There is a better way: G-WAN does it on-the-fly when it loads files from disks. In CSS files,
G-WAN also complements image links (for those many tiny icons that are < 4096 bytes in
size) with “Data URI” base64-encoded images (RFC 2397):

// In the CSS file:
.extern { background:url("../imgs/extern.gif") no-repeat right; }becomes (the url link
is kept for the inept MS Internet Explorer):
.extern { background:url(...)
 *background:url("../imgs/extern.gif") no-repeat right; }

// In the HTML file, both are invoked as follows:
gwan.ch

Merging icons into CSS file(s) eliminates many connections because CSS files are cached by
Internet browsers.

G-WAN minifies files in daemon mode only (to let developers recognize their code when
using G-WAN and the Web browser to trace what's happening).

We can also save connections by grouping larger images (> 4096 bytes) in a single file. To
get higher compression rates, group them horizontally and by color set (so they can share
the same palette). The file “test_loans.png” contains 4 loan pictures:

// In the CSS file:
.clip { position: absolute; top: 0; left: 0; }
.clipw { position: relative; }

.loan_1 { clip:rect(0 437px 185px 0); } // rect(y1, x2, y2, x1)

.loan_10{ clip:rect(0 874px 185px 437px); left: -437px; } // etc.

// In the HTML file, absolute position on a page:

// In the HTML file, relative positioning (following text flow):
<div class="clipw" style="height: 185px; width: 437px;">

</div>

GIF has a low overhead and should be used for icons and other small images. PNG works
better for larger images because it compresses better while using more verbose headers.
The JPG format should be used with real-world photos.

Always reduce the number of colors to the smallest possible power of two (2, 4, 8, etc.) that
respects your image palette: doing so will significantly reduce the file size.

© 2007 - 2013 TrustLeap® / Global-WAN® – User’s manual 11/44

G-WAN

Supported HTTP features

Protocols: HTTPS (SSLv2, SSLv3, TLS 1.1 + the TLS 1.2 “server_name” extension or Server
Name Indication, see RFC 3546 and 4366), HTTP/0.9, HTTP/1.0, and HTTP/1.1

Methods: GET, HEAD, POST, PUT, DELETE, OPTIONS (a request can be 4-KB long); all the
other 20 HTTP methods are parsed by G-WAN for C scripts, see gwan/include/gwan.h.

Encodings: entity, gzip, deflate (encodings are already parsed for handlers / servlets)

Conditions: If-[Un]Modified-Since, If-Match, If-None-Match (Etags), If-Range (bytes only)

Authorization: BASIC and DIGEST, with manual and automatic session support, see the
session.c and auth.c examples

Others HTTP servlets, HTTP handlers, directory listings, caches updated in real-time,
HTTP compression (deflate, RFC 1950 and gzip, RFC 1952)
DNT (Do Not Track) HTTP Header

Supported MIME types

 atom application / atom+xml
 xls application / excell
 gwan application / x-gwan
 js application / javascript
 json application / json
 pdf application / pdf
 bin application / octet-stream
 exe application / octet-stream
 dll application / octet-stream
 ai application / postscript
 eps application / postscript
 ps application / postscript
 rdf application / rdf+xml
 xrdf application / rdf+xml
 rss application / rss+xml
 eot application / vnd.ms-fontobject
 amf application / x-amf
 arj application / x-arj-compressed
 rar application / x-arj-compressed
 bz2 application / x-bzip2
 gwe application / x-encrypted-gwan
 fcs application / x-fcs
 ttf application / x-font-ttf
 woff application / x-font-woff
   ~~~   application / x-msdownload
   dat   application / x-ns-proxy-autoconfig
   pac   application / x-ns-proxy-autoconfig
   swf   application / x-shockwave-flash
   tar   application / x-tar
   tgz   application / x-tar-gz
   gz    application / x-gunzip
   crt   application / x-x509-ca-cert
   der   application / x-x509-ca-cert
   pem   application / x-x509-ca-cert
   xhtm  application / xhtml+xml
   xml   application / xml
   zip   application / zip
   mp3   audio / mpeg

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 12/44

G-WAN



   wav   audio / wav
   otf   font / opentype
   gif   image / gif
   png   image / png
   jpg   image / jpeg
   jpeg  image / jpeg
   svg   image / svg+xml
   ico   image / x-icon
   bmp   image / x-ms-bmp
   mf    text / cache-manifest
   css   text / css
   htm   text / html
   html  text / html
   shtm  text / html
   asm   text / plain
   aspx  text / plain
   c     text / plain
   cpp   text / plain
   cs    text / plain
   d     text / plain
   for   text / plain
   go    text / plain
   h     text / plain
   hpp   text / plain
   java  text / plain
   jsp   text / plain
   m     text / plain
   mm    text / plain
   pas   text / plain
   php   text / plain
   py    text / plain
   s     text / plain
   txt   text / plain
   rtf   text / richtext
   ttl   text / turtle
   mov   video / quicktime
   mp4   video / mp4
   mpg4  video / mp4
   mpg   video / mpeg
   mpeg  video / mpeg
   ogv   video / ogg
   webm  video / webm
   flv   video / x-flv
   mng   video / x-mng
   asx   video / x-ms-asf
   wmv   video / x-ms-wmv
   avi   video / x-msvideo

As this list is hard-coded you cannot add MIME types in G-WAN but we will add any type that
makes sense if users ask for it.

Updating static contents

When you need to add or update documents located in the  www directory you can do so
without stopping G-WAN (if the cache is enabled, all cached files are updated in real-time).

Updating servlets (C, C++, etc.)

When you need to add or update servlets located in the csp directory you can do so without
stopping G-WAN (the latest version of a script is executed).

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 13/44

G-WAN



Default HTML CSS style sheet and HTTP Errors CSS style

To personalize the HTTP default style sheet (used by directory listings), you have to make
your CSS style  available under /www/imgs/style.css.

To personalize the HTTP error style,  you have to create a CSS style sheet and make it
available under /www/imgs/errors.css.

While G-WAN is supporting all the HTTP error codes (that’s useful for servlets), only a subset
is relevant for the server (like 404, Not found):

“100 Continue”
“101 Switching Protocols”
“102 HTTP Processing”

“200 OK”
“201 Created”
“202 Accepted”
“203 Non-Authoritative Information”
“204 No Content”
“205 Reset Content”
“206 Partial Content”
“207 Webdav Multi-status”

“300 Multiple Choices”
“301 Moved Permanently”
“302 Found”
“303 See Other”
“304 Not Modified”
“305 Use Proxy”
“307 Temporary Redirect”

“400 Bad Request”
“401 Unauthorized”
“402 Payment Required”
“403 Forbidden”
“404 Not Found”
“405 Method Not Allowed”
“406 No Acceptable”
“407 Proxy Authentication Required”
“408 Request Time-out”
“409 Conflict”
“410 Gone”
“411 Length Required”
“412 Precondition Failed”
“413 Request Entity Too Large”
“414 Request-URI Too Large”
“415 Unsupported Media Type”
“416 Requested range not satisfiable”
“417 Expectation Failed”
“422 Unprocessable Entity”
“423 Locked”
“424 Failed Dependency”
“425 No Matching Vhost”
“426 Upgrade Required”
“449 Retry With Appropriate Action”
      
“500 Internal Server Error”
“501 Not Supported”
“502 Bad Gateway”
“503 Service Unavailable”
“504 Gateway Time-out”

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 14/44

G-WAN



“505 HTTP Version not supported”
“506 Variant also varies”
“507 Insufficient Storage”
“510 Not Extended”

If you use custom error codes after 600 you will have to supply their description.

Disabling Directory Listing

Just copy an index.html file in the specific directories that you want visitors not to browse. 
G-WAN only lists files in those directories that miss such an index.html file.

Note: this file must not be empty (it must at least contain a space character) but you can also
use a more personalized message.

Enabling in-memory Caching

G-WAN can be used as a caching server, both for static and dynamic contents. This is mostly
useful  when the contents to  serve fits  in  RAM, like for  a small  web site  made of  a few
thousands of pages, or for the user interface of Web applications.

In those cases, using the in-memory cache is of great help because:

• the disk I/O bottleneck is waved, allowing greater performance and scalability
• disk I/O resources are left to other consuming tasks like database queries
• serving pages faster also lets you benefit from a natural protection from DoS attacks.

By avoiding disk I/O, in-memory caching is allowing static resources to achieve the same
performance and scalability that dynamic contents enjoy with G-WAN.

To verify this, just compare how much better GET /nop.gif will perform than GET /100.bin
when  in-memory  caching  is  disabled.  Caching  will  more  than  double  G-WAN's
performances (strangely, this won't be the case for Nginx – see the test below).

G-WAN, Nginx and many other servers have an embedded resource called “bacon”. This
transparent 43-byte GIF pixel can be served better than the equivalent file stored on disk
because the server does not have to read it from the hard-disk.

To test it with the same URI from G-WAN and Nginx use the following directive in your
nginx.conf file: location = /nop.gif { empty_gif; } 

But there are other server applications like CDNs (Content Delivery Networks), online Media,
huge shopping centers, or even VPS hosting where the available amount of RAM can rarely
satisfy the caching needs: there's not enough RAM to store the Web resources.

This is why G-WAN disables  automatic in-memory caching by default.  This also makes it
easier to compare G-WAN to other servers (Nginx's memcached module is slower than G-
WAN's KV store because memcached is itself a server so the bottleneck is the network here).

To enable automatic resources caching, use the init.c file located in the /gwan root directory.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 15/44

G-WAN



Note that,  even when the  automatic use of the /www cache is disabled, you can still  add
entries into the cache from a script with  cache_add(). This may be useful to rename a Web
bacon on a per-user basis for example.

Inversely, when the  /csp (servlets) cache is enabled, you can prevent a servlet from being
cached by using the RC_NOCACHE return code.

Properly used, these caches will double the server performance and scalability.

Enabling or Disabling Timeouts, POST entity size, etc.

Unlike other Web servers like Apache2 or Nginx (and Application servers like GlassFish or
Tomcat),  G-WAN  does  not  use  configuration  files:  the  values  are  adjusted  on-the-fly
depending on the current context (server load, fetched resource, etc.). 

This may look difficult to believe for many, but relying on fixed-values is a very bad thing.

For example, Apache2 or Nginx use a fixed number of concurrent clients in configuration files
to allocate the memory upfront before accepting connections. 

In contrast, G-WAN starts with a much lower memory usage because it allocates this same
memory on-demand – and it will allocate more resources on-the-fly as needed. 

This  lets  G-WAN cope with  unexpected  traffic  spikes.  Apache2 and Nginx  will  not  cope
because users used a low fixed value to save RAM.

But configuration files are a wider problem for usability, performance and security: 

• fixed timeouts assume that all clients take the same time to load files of all sizes!
• the maximum POST entity size accepted by a server should be tunable on-the-fly
• the tcp_nopush or tcp_nodelay socket options must change depending on the resource

type rather than be fixed for a website.

Failure to use dynamic values means that Nginx or Apache2 need different configuration files
(and different server sections) to serve each resource sizes optimally! As this can't be done at
the byte level, you have to accept compromises (which translate into inefficiencies). 

In  the  relevant  cases,  the  G-WAN  API  allows  you  to  decide  on-the-fly  and  on  a  per-
connection basis or globally what settings to apply. See the get_env() function and the related
G-WAN environment variables (the gwan/init.c_ file is an example) .

By using auto-tunable variables instead of fixed values, G-WAN not only makes it easier for
users to deploy a server (there's less room for errors and the learning curve is much smaller)
but it also makes G-WAN both more efficient and safer.

For example, dynamically adjusted timeouts defeat common DoS attacks. That's not a luxury.
This must be a by-design feature.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 16/44

G-WAN



II. Setting-up an IDE.

You can develop G-WAN servlets with gedit (it comes with Linux) and an Internet browser:

gedit lets you write servlets and you just have to press F5 in the Internet browser to see the
results of a G-WAN servlets like http://127.0.0.1:8080/?hello.c 

We have found the following gedit plugins handy:

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 17/44

G-WAN

http://127.0.0.1:8080/?hello.c


– file browser pane (the list of files on the left of the screenshot)
– embedded terminal (the black rectangle at the bottom of the picture)
– session saver (it re-opens the folder and all the files)
– automatic code-completion
– indent lines
– etc.

Install them with:

sudo apt-get install gedit-plugins 

More plugins that may help:

http://live.gnome.org/Gedit/Plugins

And, as always with C, you can write your own:

http://live.gnome.org/Gedit/NewMDIPluginHowTo

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 18/44

G-WAN

http://live.gnome.org/Gedit/NewMDIPluginHowTo
http://live.gnome.org/Gedit/Plugins


III. Application Server: Dynamic contents

Servers  need  scripts for  rapid-development  and  compiled  filters for  raw  speed.  G-WAN
scripts do both – with compiled code performances. If you are in doubt about which language
to use then C survived 40 years for a reason: it fits the task.

“By using C, applications that previously had required big machines could be executed on small
ones, like the 8080.”   (Thomas Plum, 1976)

But you can use many programming languages with G-WAN, and most will fly almost as high
as C if you enable dynamic contents caching with  get_env(argv, USE_CSP_CACHE);  (see the
init.c_ example in the ./gwan directory).

If you consider using C/C++ or Objective-C, then keep reading to see how G-WAN's API can
help you to extract each CPU cycle from your CPU Cores.

Else, you can skip the API calls list in this chapter because your language already has APIs
for doing all that, and the G-WAN API can't be ported without loosing its speed. Just read this
chapter to learn how G-WAN works (return values, RESTFUL URIs, crash reports).

Assuming that G-WAN is installed and running, if you look at the files located in the  /csp
directory,  you will  see C source code files (the “servlets”).  Servlets  are run when clients
request the corresponding URL with a “?” query character: http://127.0.0.1/?benc  h.c

To display the bench.c source code you would rather use: http://127.0.0.1/benc  h.c

Your first C servlet: “301 moved permanently”

Redirecting users is useful after you moved or deleted the previous URL on your server. All
the  information  necessary  for  a  redirect  is  in  the  headers.  The body of  the  response is
typically empty, but one is created here to see how to proceed:

int main(int argc, char *argv[])
{

xbuf_t *reply = get_reply(argv); // get a pointer on the server reply buffer

xbuf_xcat(reply, 
“HTTP/1.1 301 Moved Permanently\r\n”
“Content-type: text/html\r\n”
“Location: new.html\r\n\r\n”
“<html><head><title>Redirect</title></head>”
“<body>Click <a href=\”new.html\”>here</a>”
”.</body></html>”);

return 301; // return an HTTP code (301:’Moved’)
}

The function xbuf_xcat() works like sprintf() and lets you write the reply that the server will
send to the client (without worrying about the length of the buffer because it  is extended
automatically).

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 19/44

G-WAN

http://127.0.0.1/csp?bench.c
http://127.0.0.1/bench.c
http://127.0.0.1/csp?bench.c
http://127.0.0.1/?bench.c


Your “reply” buffer can contain HTTP headers only, or just HTML code and no headers, or
both headers and HTML. When HTTP headers are  missing, the server creates headers to
match your main()’s return code (the HTTP status code).

All the standard HTTP status codes are supported but if you use your own custom codes (in
the  600+ range) then the server can’t  imagine their purpose so you will  have to explicitly
define headers and an HTML message (if you target human clients).

The  following  example  (without  headers)  is  equivalent  to  the  previous  example  (which
explicitly defined response headers):

int main(int argc, char *argv[])
{

xbuf_t *reply = get_reply(argv); // pointer on server reply buffer

static char szURI[] = ”new.html”; // new location
xbuf_xcat(reply,

”<html><head><title>Redirect</title></head>”
“<body>Click <a href=\”%s\”>here</a>.</body></html>”, 
szURI);

return 301; // return an HTTP code (301:’Moved’)
}

A servlet can use this auto-completion feature to reduce the code to its simplest expression
(for example, to filter connections per IP address, CIDR, or country):

int main() // status code 401 means ‘Unauthorized’
{

…   // do whatever you need to filter connections
Return 401; // gwan uses '401' to build headers and an HTML reply

}

Today, either your servlets will define all the headers or you will expect the server to do it all
for you. Environment variables (like an up-to-date HTTP date stamp) are available to make it
easier to quickly build HTTP headers.

Other dynamic buffer routines will help you in the task of building a reply.

Note: to send something else than HTML (like a PNG or an XML document), you MUST:

• explicitly define HTTP headers (servlet examples are provided) or, 
• return an invalid HTTP status code (see the JSON explanation below) or,
• use the get_env() function call to setup a MIME type for your reply (see fractal.c):

// specify a MIME type so we don't have to build custom HTTP headers 
char *mime = (char*)get_env(argv, REPLY_MIME_TYPE); 

// note that we setup the FILE EXTENTION, not the real MIME type: 
mime[0] = '.'; mime[1] = 'g'; mime[2] = 'i'; mime[3] = 'f'; mime[4] = 0; 

This latest method is the easiest (and the most efficient), but, hey, we are programmers: that
means that G-WAN is not there to limit your options.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 20/44

G-WAN



Sending non-HTTP Replies (JSON, etc.)

A servlet may need to talk to a client without HTTP headers. Here, G-WAN’s HTTP headers
automatic completion (based on the HTTP status code) is a nuisance.

To prevent HTTP headers automatic completion, just make your servlets return an  invalid
HTTP status code in the 1-99 range (inclusive).

By doing so, you can send whatever you wish, and G-WAN will not interfere.

Dynamic buffers

Dynamic buffers, like memory pools, are an efficient way to reduce the burden of memory
management for high-performance programs. They are also convenient: servlets can just fill
dynamic buffers without having to care about size, alignment,  allocation lifetime,  locks or
heap fragmentation.

They are also immensely safer: you can’t overflow dynamic buffers (unless you are using all
the memory available  on a machine)  and ‘bad’ pointers are more likely  to  point  to  legal
memory areas – the kind that will not cause a crash.

Each C servlet has a ”reply” xbuffer aimed at sending information to clients.

But it may also be useful to create additional dynamic buffers in your servlets (to load an
HTML template file, or to get the reply of a query sent to a web server).

You are expected to call xbuf_free() to release any dynamic buffer that you have created (but
you should never free the server “reply” buffer).

xbuf_reset() (re)initiatize a dynamic buffer (without freeing memory)
xbuf_frfile()   load a file, and store its contents in a dynamic buffer
xbuf_tofile()   save the dynamic buffer in a file
xbuf_frurl()    make an HTTP request, and store the result in a dynamic buffer
xbuf_cat()    like strcat(), but in a dynamic buffer rather than a string
xbuf_ncat()    like strncat(), but it also copies binary data in the specified buffer
xbuf_xcat()    formatted strcat() (a la sprintf) in the specified dynamic buffer
xbuf_insert()   insert bytes at a given position in the buffer
xbuf_delete()    delete bytes at a given position in the buffer
xbuf_getln()      get an LF-terminated text line from a buffer
xbuf_findstr()  find a given string into the buffer
xbuf_repl()      replace a string by another string in a buffer
xbuf_replfrto() like the call above, but from/to given pointers in the buffer
xbuf_free()      release the memory previously allocated for a dynamic buffer

The servlet examples (/csp folder) demonstrate the syntax of all those functions. 

Why  not  just  enumerate  their  parameters  here  like  in  most  manuals?  Because  nothing
replaces  working  examples:  we  have  seen  countless  documentations  that  miss  critical
context information – like in which order the API calls should be called to have any effect.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 21/44

G-WAN



Getting GET/POST parameters

Sending information is only half of the job: often, you will also need to get information sent by
the client (via GET or POST HTTP requests).

G-WAN transparently processes  GET, POST and  PUT in the very same way to let you access
parameters with the same code (via the get_arg() call), but you can also walk main() argv[]
the 'manual' way (see the argv.c example):

unsigned int i = 0; 
while(i < argc) 
{ 
    xbuf_xcat(reply, "argv[%u] '%s'<br>", i, argv[i]); 
    i++; 
}

Please refer to the csp/contact.c, csp/loan.c and csp/argv.c examples.
You can invoke those examples as follows:

http://127.0.0.1/?contac  t  .c

Getting server “environment” variables

Traditional ‘environment’ variables are available to servlets. G-WAN variables, like the current
HTTP date/time are also available: the work is already done by the server.

   REQUEST = 0,     // char  *REQUEST;        // "GET / HTTP/1.1\r\n..." 
   REQUEST_LEN,     // int    REQUEST_LEN     // strlen(REQUEST); with headers 
   REQUEST_METHOD,  // int    REQUEST_METHOD  // 1=GET, 2=HEAD, 3=PUT, 4=POST 
   QUERY_STRING,    // char  *QUERY_STRING    // request URL after first '?' 
   FRAGMENT_ID,     // char  *FRAGMENT_ID     // request URL after last '#' 
   REQ_ENTITY,      // char  *REQ_ENTITY      // "arg=x&arg=y..." 
   CONTENT_TYPE,    // int    CONTENT_TYPE    // 1="x-www-form-urlencoded" 
   CONTENT_LENGTH,  // int    CONTENT_LENGTH  // body length provided by client 
   CONTENT_ENCODING,// int    CONTENT_ENCODING// entity, gzip, deflate 
   SESSION_ID,      // int    SESSION_ID;     // 12345678 (range: 0-4294967295) 
   HTTP_CODE,       // int   *HTTP_CODE;      // 100-600 range (200:'OK') 
   HTTP_HEADERS,    // struct *http_t;        // see struct http_t above 
   AUTH_TYPE,       // int    AUTH_TYPE;      // see enum AUTH_Type {} 
   REMOTE_ADDR,     // char  *REMOTE_ADDR;    // "192.168.54.128" 
   REMOTE_BIN_ADDR, // u64    REMOTE_BIN_ADDR;// u64 ip = numeric_ip_address; 
   REMOTE_PORT,     // int    REMOTE_PORT;    // 1460 (range: 1024-65535) 
   REMOTE_PROTOCOL, // int    REMOTE_PROTOCOL // ((HTTP_major*1000)+HTTP_minor) 
   REMOTE_USER,     // char  *REMOTE_USER     // "Pierre" 
   REMOTE_PWD,      // char  *REMOTE_PWD      // "secret" 
   CLIENT_SOCKET,   // int    CLIENT_SOCKET   // 1032 (-1 if invalid/closed) 
   USER_AGENT,      // char  *USER_AGENT;     // "Mozilla ... Firefox" 
   SERVER_SOFTWARE, // char  *SERVER_SOFTWARE // "G-WAN/1.0.2" 
   SERVER_NAME,     // char  *SERVER_NAME;    // "domain.com" 
   SERVER_ADDR,     // char  *SERVER_ADDR;    // "192.168.10.14" 
   SERVER_PORT,     // int    SERVER_PORT;    // 80 (443, 8080, etc.) 
   SERVER_DATE,     // char  *SERVER_DATE;    // "Tue, 06 Jan 2009 06:12:20 GMT" 
   SERVER_PROTOCOL, // int    SERVER_PROTOCOL // ((HTTP_major*1000)+HTTP_minor) 
   VHOST_ROOT,      // char  *VHOST_ROOT;     // the (virtual) host root folder 
   WWW_ROOT,        // char  *WWW_ROOT;       // the HTML pages root folder 
   CSP_ROOT,        // char  *CSP_ROOT;       // the CSP .C files folder 
   LOG_ROOT,        // char  *LOG_ROOT;       // the log files folder 
   HLD_ROOT,        // char  *HLD_ROOT;       // the handlers folder 
   FNT_ROOT,        // char  *FNT_ROOT;       // the fonts folder 
   MIN_SEND_SPEED,  // int   *MIN_SEND_SPEED; // in bytes/sec (if < close) 

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 22/44

G-WAN

http://127.0.0.1/?contact.c
http://127.0.0.1/?contact.c
http://127.0.0.1/?contact.c


   MIN_READ_SPEED,  // u32   *MIN_READ_SPEED; // in bytes/sec (if < close) 
   READ_XBUF,       // xbuf_t*READ_XBUF;      // pointer to the read() xbuffer 
   HEAD_XBUF,       // xbuf_t*HEAD_XBUF;      // response HTTP headers(), if any 
   SCRIPT_TMO,      // u32   *SCRIPT_TMO;     // time-out in milliseconds 
   KALIVE_TMO,      // u32   *KALIVE_TMO;     // time-out in milliseconds 
   REQUEST_TMO,     // u32   *REQUEST_TMO;    // time-out in milliseconds 
   NBR_CPUS,        // int    NBR_CPUS;       // total of available CPUs 
   NBR_CORES,       // int    NBR_CORES;      // total of available CPU Cores 
   NBR_WORKERS,     // int    NBR_WORKERS;    // total of server workers 
   CUR_WORKER,      // int    CUR_WORKER;     // worker thread number: 1,2,3... 
   REPLY_MIME_TYPE, // char  *REPLY_MIME_TYPE;// set script's reply MIME type 
   DEFAULT_LANG,    // u8     DEFAULT_LANG;   // CC_D: /?hello.d => /?hello 
   QUERY_CHAR,      // u8     QUERY_CHAR;     // replace '?' by [ -_.!~*'() ] 
   REQUEST_TIME,    // u64    REQUEST_TIME;   // time (parse+build) in microsec 
   MAX_ENTITY_SIZE, // u32   *MAX_ENTITY_SIZE;// maximum POST entity size 
   USE_WWW_CACHE,   // u8    *USE_WWW_CACHE;  // 0:disabled (default) 1:enabled 
   USE_CSP_CACHE,   // u8    *USE_CSP_CACHE;  // 0:disabled (default) 1:enabled 
   CACHE_ALL_WWW,   // u8    *CACHE_ALL_WWW;  // 1:cache all /www at startup 
   USE_MINIFYING,   // u8    *USE_MINIFYING;  // '1' by default (JS/CSS/HTML) 

DOWNLOAD_SPEED lets  you  calm G-WAN's  enthusiasm at  slamming the  door  on  the  face  of
impolite visitors, cutting connections that do not send or receive data sufficiently quickly.

The default (fair?) value is 4,096 bytes per second. If you feel that it is acceptable for clients
to be slower, set DOWNLOAD_SPEED to an integer value > 1 (like 2, 3, 10...):

int *pDN_SPEED = (int*)get_env(argv, DOWNLOAD_SPEED); 
if(pDN_SPEED) // check that we got a pointer
   *pDN_SPEED = 2; // allow 2,048 bytes per second

If you don't trust all your visitors but would like a more permissive policy for a privileged group
of users then you can use a G-WAN Handler to apply this option on a per case basis (by
CIDR, IP address, authentication, etc.).

The SCRIPT_TMO value is addressed in the same way as DOWNLOAD_SPEED, get_env() giving you
a pointer on the value that you can then read or modify.

READ_XBUF // xbuf_t* // the G-WAN xbuffer used to store the HTTP request

Servlets can also access G-WAN’s internal performance counters:

CC_BYTES_IN // unsigned long long 
CC_BYTES_OUT // unsigned long long 
CC_BYTES_INDAY // unsigned long long 
CC_BYTES_OUTDAY // unsigned long long
CC_ACCEPTED // unsigned int // total number of TCP connections
CC_CLOSED // unsigned int // total number of TCP connections 
CC_REQUESTS // unsigned int // total number of requests
CC_HTTP_REQ // unsigned int // number of HTTP requests 
CC_CACHE_MISS // unsigned int // requests not satisfied by the cache 
CC_ACPT_TMO // unsigned int // attack: connection without request 
CC_READ_TMO // unsigned int // attack: partial request received 
CC_SLOW_TMO // unsigned int // attack: request sent too slowly 
CC_SEND_TMO // unsigned int // attack: reply fetched too slowly 
CC_CSP_REQ // unsigned int // number of Servlet requests 
CC_STAT_REQ // unsigned int // number of Statistics requests 
CC_HTTP_ERR // unsigned int // number of HTTP errors
CC_EXCEPTIONS // unsigned int // number of Servlet faults
CC_BYTES_INDAY // u64 // number of bytes received today
CC_BYTES_OUTDAY // u64 // number of bytes sent today

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 23/44

G-WAN



And this is G-WAN persistent pointers usable from scripts:

   US_REQUEST_DATA = 200, // Request-wide pointer 
   US_HANDLER_DATA,       // Listener-wide pointer 
   US_VHOST_DATA,         // VirtualHost-wide pointer 
   US_SERVER_DATA,        // Server-wide pointer (global) 
   US_HANDLER_STATES,     // states registered to get server-state notifications 
   US_HANDLER_CTX_SIZE    // size of "Protocol Handler" per-connection context 

Template Engines

Web development frameworks inevitably come with a template system. C#, Java and PHP
mix  scripting,  variables  and HTML (each using  a  different  proprietary  syntax)  to  achieve
“independence between the application user interface and the application logic”.

The G-WAN contact.c example is using an HTML template form where HTML comments are
used to embed C script variables in the presentation layer:

<p><!--time--><br><!--ip--><br></p>

This portable and RFC-compliant choice has several advantages:

– the variable remains invisible until it is used (it's an HTML comment);
– the syntax is completely standard (that's not another patent mine-field);
– any other framework could use the same syntax overnight (openness);
– there is no limit about what you can put in such a variable (you decide).

Keeping it simple has its value: a lower learning curve, less bugs, etc.

The G-WAN Key-Value Store

A server is using lists. Some must be simple, others must be fast, and all must scale. Experts
say that no data structure can do it all optimally. 

Concurrency is a major feature. Most databases do not scale with concurrency because they
rely on locks (like SQLite) or on delayed tasks (when they are “lock-free”, like ORACLE).

– Why make your own KV store when so many others already exist?

– For the same reason that G-WAN was needed: it can be done much faster.

The G-WAN KV store uses only 7 functions, is faster than the best NoSQL DB engines, and
scales seamlessly because it is “wait-free” (lock-free, without delayed tasks).

This store lets you create tables with records, as well as indexes – on-the-fly if needed.

Keys, like Values, are limited in size to 4 GB. Both can be ASCII strings or binary chunks and
the kv_add() / kv_get() / kv_del() functions are the same whatever the case. A kv_do() call
lets you apply a user-defined function to a subset of a KV store.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 24/44

G-WAN



To see how to use those functions and kv_init() / kv_free(), look at kv.c. 

To see how well it performs as compared to SQLite (b-tree) or Tokyo Cabinet TC (a hash-
table) and TC-FIXED (a simple array), see the kv_bench.c example.

And this test is merely a single-thread test. Add concurrency and SQLite as well as Tokyo
Cabinet die in pain because there a single write blocks other read/write threads.

Not in G-WAN's case. It is never ever blocking nor delaying any processing.

How solid is it? G-WAN relies on it and has been tested with very high concurrencies. 

We could make it 2-4 times faster by pre-allocating memory instead of calling  malloc() for
each newly created record (but using malloc() lets G-WAN keep a low memory usage).

Using Persistence Pointers

Servlets and Handlers can use persistence to store data tuples, a socket connected to a
database server or another application server, etc.:

// get the Virtual Host persistent pointer
void **ptr = (void**)get_env(argv, US_VHOST_DATA);

// just an example of what can be done
typedef struct hive_s 
{ 
   kv_t *my_kv_store; // yep, G-WAN has one!
   void *my_whatever;
   void *my_sql_persistent_connection;
} hive_t;

if(!*ptr) // if the pointer has never been used, attach our structure
   *ptr = (void*)malloc(sizeof(hive_t));

if(*ptr)
   (*ptr)->my_whatever = strdup(“I want to remember this”);

To store more than a single buffer,  the persistence pointer can host linked-lists, trees, in-
memory SQLite tables, memcached entries, or … G-WAN's Key-Value Store (see kv.c).

To let you chose the most efficient tool for your needs, G-WAN just provides a pointer. If it is
not used then it will not consume memory.

See handlers/main.c to see how to use US_HANDLER_DATA with a G-WAN Handler .
See csp/contact.c to see how to query other variables with get_env().

Making Blocking BSD Socket Calls Run Asynchronously

Web frameworks are either blocking (performing poorly by stacking hundreds of threads) or
asynchronous (and difficult to use because everything must be a state-machine).

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 25/44

G-WAN



To perform and scale one must avoid blocking a server. Using many blocking threads is
not as efficient as using true asynchronous calls (because of the threading overhead:
more memory used by each thread, context switches, etc.).

Client connections are difficult to use with asynchronous servers because they have to re-use
the HTTP server internal state-machine (and doing this requires clunky interfaces, just look at
how difficult writing Nginx modules can be).

G-WAN lets you write procedural code using blocking BSD socket calls like connect(), recv()
or send() – while behind the scene they run asynchronously.

With this feature, C scripts can process network events without waiting for them to complete.
Without  it,  the  latency of  database  servers or  of  other  back-end  application  servers
uselessly blocks an HTTP server (or reverse-proxy) like G-WAN.

And it works transparently with existing TCP-based network libraries like libCURL, OpenSSL
or the mySQL / PostgreSQL client ANSI C libraries.

Of course, G-WAN´s  xbuf_frurl() HTTP client (see  get_headers.c,  request.c or  attack.c) is
taking  advantage  of  it  to  let  you  query  remote  servers  without  ever  blocking  G-WAN's
threads.

Putting it all together

The  /csp/loan.c example uses  AJAX to process a form without reloading the whole HTML
page. When users press the ‘Calculate’ button, the loan is displayed in the same HTML form
used to gather data entered by the end-user.

This example can be used as the basis of  more complex Web 2.0 applications (G-WAN
already  issues  session  ids,  see  get_env() and  SESSION_ID,  and  SQL  libraries  provide
persistence for session handling):

LOAN DETAILS

Amount 10,000.00

Rate 3.50%

Term 1 year(s)

Cost 190.60 (1.91%)

YEAR 1  

MONTH PAYMENT INTEREST PRINCIPAL BALANCE

January 849.22 29.17 820.05 9,179.95

February 849.22 26.77 822.44 8,357.51

March 849.22 24.38 824.84 7,532.67

April 849.22 21.97 827.25 6,705.42

May 849.22 19.56 829.66 5,875.76

June 849.22 17.14 832.08 5,043.69

July 849.22 14.71 834.51 4,209.18

August 849.22 12.28 836.94 3,372.24

September 849.22 9.84 839.38 2,532.86

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 26/44

G-WAN



October 849.22 7.39 841.83 1,691.03

November 849.22 4.93 844.28 846.75

December 846.75 2.47 844.28 0.00

  This page was generated in 0.01 ms.
  (on a 3GHz CPU 1 millisecond = 3,000,000 CPU clock cycles)

As PHP, Perl, Python, Java and C# are orders of magnitude slower than C, G-WAN uses
advanced threading scheduling and sub-second caching to accelerate slow servlets.

To benchmark a servlet you have to measure the script execution time (printed above) but
also the server processing and reply time which can be calculated by Weighttp (an evolution
of AB [Apache Benchmark] that lets you use more than one worker thread with the -t switch)
with different concurrency loads (ab -c 10, 100, 500, 1000):

weighttp -n 1000000 -c 100 -t 4 -k -H “Accept-Encoding: gzip” \ 
   “http://10.10.2.4:80/?loan&name=Eva&amount=10000&rate=3.5&term=10”

Modifying the term (number of years) lets you control the volume of calculations, the length of
the resulting HTML page, and verify how it scales with high concurrencies.

As explained in great details on our Web site, AB cannot saturate a Web server designed to
use  multicore systems because AB is  single-threaded. Many more details are available for
the curious here: http://gwan.ch/en_apachebench_httperf.html

This source code will help you to make benchmarks and generate charts with Requests per
second, as well as CPU and RAM usage: http://gwan.ch/source/ab.c.txt 

Additional functions

The portable G-WAN calls below (documented in   gwan.h) are available from C servlets:

cycles64() get the CPU clock cycle counter’s value (64-bit value)
getms() get the current time in milliseconds (64-bit value)
getus() get the current time in microseconds (64-bit value)

s_time()   equivalent to time(0) (but much faster under Windows)
s_gmtime() equivalent to gmtime(); but faster (and thread-safe)
s_asctime() equivalent to asctime(); but faster (and thread-safe)
s_localtime() equivalent to localtime(); but faster (and thread-safe)

time2rfc() format an HTTP date string from a given time_t value
rfc2time() return a time_t value from an HTTP date string

sw_init() a good pseudo-random numbers generator sw_rand()
hw_init() a true hardware random numbers generator hw_rand()

get_arg() get GET/POST application/x-www-form-urlencoded parameters
get_env() get G-WAN’s “environment” variables

url_encode() encode an URL so you can use it

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 27/44

G-WAN

http://gwan.ch/source/ab.c.txt
http://gwan.ch/en_apachebench_httperf.html


escape_html() encode a buffer so you can use it in HTML
unescape_html() decode a buffer
html2txt() remove all HTML tags from a buffer

s_snprintf() like the libc call, but with more tricks (all used by xbuf_xcat):

%b binary conversion (use %llb for 64-bit integers)
8 => “1000”

%B encode a null-terminated string with base64
%-B decode a base64 null-terminated string
%12B encode a 12-byte binary buffer (null bytes do not stop encoding)

%C generate a string of n times the specified character
%3C ’A’ => “AAA”

%k 1024 => “1 KB” (byte, KB, MB, GB... formatter; use %llk for 64-bit integers)

%H calls escape_html()

%R calls url_encode()

%T calls html2txt()

gif_build() build an in-memory GIF from a raw bitmap; see fractal.c and chart.c
gif_parse() parse an in-memory GIF from a buffer; see the chart.c example

dr_line() raw bitmap drawing primitives, see gwan.h
dr_circle()
dr_rect()

dr_chart() draw area/bar/dot/line/pie/ring charts, see  the chart.c example

It can also draw sparklines: 

md5() to calculate MD5 hash values
sha1() to calculate SHA1 hash values
sha2() to calculate SHA2 hash values

crc32() to calculate CRC32 checksums
adler32() to calculate Adler32 checksums

aes_init() to setup an encryption key (use hw_rand())
aes_enc() to encrypt data with the U.S. NIST FIPS PUB 197 standard (2001)

gzip_cmp() to compress data under the GZIP and ZLIB (deflate) standard formats
lzjb_cmp() to compress data very quickly
lzjb_exp() to decompress data very quickly

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 28/44

G-WAN



cacheadd() add (or update) a file or a buffer in G-WAN’s memory cache
cacheget() search a file or a buffer in G-WAN’s memory cache
cachedel() delete a file or a buffer from G-WAN’s memory cache

sendemail() send an email to an SMTP server (see the contact.c example)

jsn_frtext() parse text to build a JSON tree
jsn_totext() export a JSON tree into text
jsn_byindex()search a value by its index in JSON tree
jsn_byname() search a value by its name in JSON tree
jsn_byvalue()search a value by its value in JSON tree
jsn_add() add data to a JSON tree
jsn_del() remove data from a JSON tree
jsn_updt() update data in a JSON tree
jsn_free() free the memory used by a JSON tree

gc_malloc() allocated temporary memory (freed when C scripts return)
gc_free() free memory allocated by gc_malloc(), mostly useless

kv_init() create a Key-Value
kv_add() add a Key-Value tuple in the Store
kv_get() search a Key-Value tuple
kv_del() delete a Key-Value tuple

kv_free() free the Store and all its contents
kv_do() execute a user-defined function on a subset of the Store

See the dedicated kv.c and kv_bench.c examples for how to use the Key-Value store.

“Pretty” URLs for Dynamic content generation

The default URI form is “/?servlet” (like “/?hello.c”).

There's a simple way that avoids the “/?” prefix completely – without URI rewriting and which
gives you total liberty, allowing requests like: “/articles/coding/syntax”: use G-WAN's cache
to store resources under a virtual path (see the cache.c example).

RESTFUL Web services

REST is a bunch of recommendations that aim to deliver stateless (and therefore scalable)
Web services. The following suggestions are recurring:

– do not use query strings if possible (no /?forum&topic=linking+issues);
– use GET to fetch, POST to create, PUT to update, DELETE to erase data;
– keep all resources in a tree-like hierarchy (/net/host/disk/dir/file) ;
– keep URIs in lower-case (data can use upper-case); 
– replace spaces by '_' (underscores);
– users must be able to bookmark all resources (so they can be cached too);
– resources must contain links to find more details about the resource: "/products/412" can

contain the link "/products/412/specifications" ;

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 29/44

G-WAN



– use the "Accept:" HTTP header to let clients specify the format (xml, json, html...) they can
use to read resources so your services can be more flexible;

– don't reply 404 for a partial path, reply with a parent or default resource;
– hide the server scripting technology (csp, jsp, php) so you can port applications to another

language without changing the URLs.

Examples:

GET /?forum&listuser=Eva         (not RESTFUL: query, parameters)
GET /forum/users/Eva             (OK: GET tree-like)

GET /?adduser&name=Robert        (not RESTFUL, use POST to create)

POST /forum/users HTTP/1.1       (OK, use PUT to update data)
Host: gwan.ch
Content-Type: application/json
{ “user”: { “name”:”Eva” } }

As some vendors (like eBay) present APIs that they call “RESTFUL” and which are based on
queries (?) and parameters (&), the concept is far from being strictly defined.

With (strict) RESTFUL URLs, it seems that you have first to test if the URL exists as a static
content (like a directory). If none is found then you have to check if a servlet can match any
part of the URL prefix before you report “404: Not found”.

Unless your server only serves dynamic contents, such a procedure is very inefficient. 
This can be resolved by using:

– G-WAN Virtual Servers for each  RESTFUL service like secure.host.com while host.com
only serves non-RESTFUL services;

– You can also use a G-WAN Handler to rewrite URLs (and each Virtual Server can use a
different Handler) in order to be truly RESTFUL;

If you absolutely need to get rid of the '?' query character then use a G-WAN handler to
overwrite one single character: 
(in the example below, a * is used instead of the ?) 

   client    : http://localhost/*hello.c   (make sure that a slash precedes the star: "/*") 
   handler: http://localhost/?hello.c   (G-WAN returns 404 if the script does not exist) 

The RESTFUL substitute character can safely be chosen from the unescaped URI character set:
" - _ . ! ~ * ' ( ) "(see rfc_2396 section "2.3. Unreserved Characters")

The rest is discipline: instead of using query parameters you will have to use a hierarchy (but
no query) and attributes (instead of parameters) in your URLs:

GET /?loan.c&name=Eva&amount=10000&rate=3.5&term=10

would become something like:

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 30/44

G-WAN



GET /'loan.c/name/Eva/amount/10000/rate/3.5/term/10

Here, G-WAN cannot transparently parse ‘parameters’ like in a query because there is no
explicit link between “name” and “Eva” or “amount” and “10000” in the syntax. For this to happen,
you must rather use:

GET /'loan.c/name=Eva/amount=10000/rate=3.5/term=10

Caching, Expires Header

Let’s say that you generate dynamic contents with a C servlet:

http://127.0.0.1/?servlet&arg1=123&arg2=456 

But (a) you don’t want the same contents to be generated for each request, and (b) you want
to make these contents available at a “pretty” URL (no “/?servlet”).

After you generate the page, just before calling return(200) in your code, insert the following
code in your C servlet:

// note: no starting ‘/’ in the virtual path 
static char path[] = ”tools/counter.html”;  // a ‘virtual’ path
int expire = 0; // 0:never

// 200 is the HTTP status code returned by the server for this cached entry
// (play with redirections: ret = 301, or with cached JSON entries: ret = 1)
if(cacheadd(argv, path, reply->ptr, reply->len, 200, expire) < 0)
   error(); // out of memory

return 200; // return an HTTP code (200:’OK’)

'path' is the “pretty” path (not the URL) that you want to use. cacheadd() will just update any
existing cache entry.

Use  a  relevant  file  extension  to  let  G-WAN  pick  a  specific  MIME  type  so  that  HTTP
compression can be applied when needed (without extension, “html/text” is used).

The expire value can be 0 (never expire, staying cached until you delete it), or it can be the
number of seconds before it will expire (60*60=3600 for a one-hour lifespan).

Expire lets you to put entries in the cache – and forget about them, but expire also lets G-
WAN generate relevant “Expires:“ and “Cache-Control:“ HTTP headers on your behalf (telling
proxy servers and browsers to query G-WAN only when needed).

The expiration feature lets you define expiring links to a given resource for clients. See the
cache.c example.

HTTP Compression (gzip and deflate)

For each host, the /gwan/.../gzip directory is used to cache on disk the static documents that
have already been gzipped. This cache is refreshed automatically if the  static document is
updated on disk in its /www directory.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 31/44

G-WAN



For dynamic contents, if a client supports gzip or deflate then servlet outputs that are > 499
bytes are compressed on-the-fly (compressing smaller buffers wastes resources pointlessly).

G-WAN will not try to gzip dynamic contents it if your servlets use a MIME type that cannot be
compressed (like JEPG, GIF or PNG images).

Scripts execution errors, crashes and debugging

At run time G-WAN signals syntax errors, undefined symbols, etc. in the terminal used to run
gwan, before C servlets execute. This allows you to start G-WAN with servlets that (at least)
compile and link.

G-WAN also “gracefully” handles C servlet crashes and reports where exactly in the C source
code the fault happened (instead of stopping the server).

For example, if you let G-WAN run this code:

1. void crash() { *((int*)(0))=0xBADC0DE; } // write access violation
2. int  main () { crash(); return 200; }

G-WAN will tell you which line in your C source code file did it wrong:

Exception: c0000005 Write Access Violation
Address: 06d3b413
Access Address: 00000000
 
Registers: EAX=0badc0de CS=001b EIP=06d3b413 EFLGS=00010246

EBX=00000000 SS=0023 ESP=0166df34 EBP=0166df3c
ECX=00000000 DS=0023 ESI=00000104 FS=003b
EDX=0166fc58 ES=0023 EDI=0166f47c CS=001b

 
Call chain:(line) PgrmCntr(EIP) RetAddress FramePtr(EBP) StackPtr(ESP)
crash():    1      06d3b413      06d3b4a6   0166df3c      0166df34
main():     2      06d3b4a6      0042d1ea   0166df64      0166df34
 
Servlet: csp/crash.c
Query  : /?crash.c   (may be useful to reproduce the error) 
Client : 127.0.0.1   (may be useful to identify recurring offenders)
 

Until you fix the code, G-WAN reports an “internal server error” (status 500).

G-WAN execution errors, crashes and debugging

When used in daemon mode, if a child dies the gwan parent process forks again to continue
servicing clients. If there is a failure, it may be G-WAN (or something else), you need to know,
and you must not have to search forever to find out.

The /gwan/trace file only lists the child start/stop status:

Fri, 28 Oct 2010 09:11:46 GMT: start
Fri, 28 Oct 2010 09:11:51 GMT: clean stop

If a child crashed, you will find a stack frames dump instead of a “clean stop”.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 32/44

G-WAN



The /gwan/gwan.log file will also tell what happened before a new child was forked:

[Thu, 28 Oct 2010 10:25:16 GMT] * child normal exit(3)   exit code
[Sat, 28 Oct 2010 14:34:07 GMT] * child clean stop Ctrl+C, gwan -k
[Sat, 28 Oct 2010 16:52:43 GMT] * child abort(11)    11 : SIGSEGV

The daily server HTML report also indicates how many forks took place, and lists the system,
parent, and child uptimes:

System Uptime: 01 day(s) 00 month(s) 00 year(s) 12:32:44
Parent Uptime: 01 day(s) 00 month(s) 00 year(s) 10:40:40
Child  Uptime: 01 day(s) 00 month(s) 00 year(s) 10:40:40
fork: 1 (times parent started a child)

In daemon mode, if there is more than one fork then check /gwan/trace. If you have such a
crash then contact us, we will do our best to help you find what caused the crash.

Web Applications Security

Cross-site scripting, injection attacks or request forgery are made easy and having success
for simple reasons which can easily be listed:

– the surface of vulnerability is expending with new Web browser features;
– web developers already have a job and just can't cope with these issues;
– fixing the whole stuff would severely harm the so-called 'advertising' business.

By identifying data flows, simple cryptographic tags would greatly limit the room for abuses in
the “cool-features” area because servers could distinguish between clients (the good, the bad
and the ugly) -even in a single aggregated flow.

More sophisticated users would find it  priceless to be in a position to actually trust what
transits on public networks (with today’s tools, this goal remains out of reach).

It is typically claimed that cryptography is weakened or avoided to preserve performances
and scalability when securing content. This is mainly due to the fact that people reuse generic
libraries instead of writing on-purpose code (like G-WAN). A thing or two can also be done in
this matter.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 33/44

G-WAN



IV.  Extending the Joy

A development platform must let developers and third-parties extend its features. And it must
be as easy to use as possible – both to save time and to avoid errors.

G-WAN works with:

– Servlets (to handle HTTP forms, query databases, etc.);
– Handlers (to filter, encode, authenticate, log, implement protocols, etc.);
– Libraries (to add new functions to Servlets and Handlers);
– Applets (on the client side) and with the optional G-WAN 'maintenance' script.

A word about interfaces

Usually, plug-ins connect with the server through interfaces. They rely on formats that you
have to learn, they are uselessly error-prone and complex – and they can even become
obsolete and are replaced (it was the case for IBM Apache and Microsoft IIS).

For all those reasons, the best interface is “none”:

–    Servlets copied into the gwan/.../csp sub-folder will be used;
–    Handlers copied into the gwan/.../handlers sub-folder will be used;
–    Includes copied into the gwan/include folder will be used;
–    Libraries copied into the gwan/libraries folder will be used (#pragma link);
–    Fonts copied into the gwan/fonts sub-folder will be used;
–    main.c copied into the /gwan folder will be used as a maintenance script.

To  disable  a  servlet/handler/library  just  delete  or  rename  it  extension  (to  *.c_,  *.so_  -or
anything else than the expected *.c and *.so).

To disable any of these capabilities, remove (or rename) the /csp folder to completely disable
servlets, the /handlers folder to completely disable Handlers, etc.

Servlets

Servlets let programmers build Web applications on the top of G-WAN.

Servlets let you build replies to client HTTP requests. A reply can be an HTML page, just
HTTP headers, both, or a PNG image, an XML document, etc.

You do not have to stop and restart gwan to update modified servlets (or to load new ones). G-
WAN does it on-the-fly. Servlets are covered in Chapter II.

Connection Handlers

Connection Handlers are C scripts like servlets. But instead of just letting you build the reply
of an HTTP request, they allow you to act at all the different stages of a connection:

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 34/44

G-WAN



(a) after the connection is accepted;

Use the client IP address to filter access to your server:

switch(ip_range) {
case x: return 0;    // close connection
case y: return 1;    // build reply based on created URL 
case z: return 2;    // send reply provided in reply buffer
default: return 255; // continue normally with current data
}

(b) after data is read from the connections;

Here  you  can use G-WAN as  a  TCP server,  controlling  its  behavior,  decoding or
altering a request, directly replying, etc.:

switch(choice) {
case x: return 0;    // close connection
case y: return 1;    // read more data from client
case z: return 2;    // send reply provided in reply buffer 
default: return 255; // continue normally with current data
}

(c) before and after an HTTP request has been parsed and validated;

Here you can use G-WAN as a front-end server, and redirect or alter requests:

switch(choice) {
case x: return 0;    // close connection
case z: return 2;    // send reply provided in reply buffer
default: return 255; // continue normally with current data
}

(d) if the requested resource was not found;

You can change the server reply (or the HTTP error), or close the connection:

switch(choice) {
case x: return 0;    // close connection
case z: return 2;    // send reply provided in reply buffer
default: return 255; // continue normally with current data
}

(e) before and after the server reply is sent to the client;

You can encode the server reply before it is sent, or log the request with an alternate
method (in selected cases for example), or stop HTTP keep-alives:

switch(choice) {
case x: return 0;    // close connection (do not send)
default: return 255; // continue normally with current data
}

Handlers have three entry points (see the /gwan/include/gwan.h file for details):

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 35/44

G-WAN



Int init(char *argv[], int argc); 
int main(char *argv[], int argc); 
int clean(char *argv[], int argc);

init() lets you define persistent data structures to hold white-lists or black-lists, etc. 
It also lets you define which notifications main() will receive:

int init(int argc, char *argv[]) 
{ 
   u32 *states = (u32*)get_env(argv, US_HANDLER_STATES); 
   *states = (1 << HDL_AFTER_ACCEPT) 
           | (1 << HDL_BEFORE_PARSE) 
           | (1 << HDL_AFTER_WRITE) 
           | (1 << HDL_HTTP_ERRORS); // this one is new 
   return 0; // >= 0:success 
} 

main() is called for each server request and will do the job at each a/b/c/d step.

clean() is called by G-WAN when a virtual host (or the server) is closing. You can use it to
free your persistent structures, save your custom counters on disk, etc.

There is an Handler example called main_generic.c__ located in your gwan/handlers folder.
Just  rename  it  to  main.c  to  have  it  being  used  by  G-WAN.  It  shows  how  to  use  the
US_HANDLER_DATA persistence pointer.

Handlers can be used to to customize and extend G-WAN at will. Here are some ideas:

– ip_acl.c (filter incoming connections by IP addresses or CIDRs);
– ip2geo.c (filter or redirect incoming connections by country);
– throttle.c (limit the number of concurrent requests sent by a client);
– url_wr.c (rewrite URLs to hide servlets or to redirect to moved pages);
– crypto.c (decrypt HTTP requests and encrypt HTTP replies);
– syslog.c (log connections on a remote syslog server). 

Handlers can even be used to implement other protocols like POP3, SMTP or IMAP, using G-
WAN as a general-purpose socket server in addition to using it as a Web server (the less you
have server processes installed and running, the less you will have maintenance and security
troubles).

Handlers are defined on a per listener basis. They can’t be defined on a per virtual host basis
because when the before accept  Handler is triggered the Host header has not  yet  been
received (so we can’t tell which virtual host should be served).

If you need to define specific handlers for a given Web site, just dedicate a listener for this
Web site. You can define any number of IP addresses for a single machine, even with a
single network interface, making it easy to create new listeners.

At the moment, only one handler can be defined per listener (a more elaborated mechanism
will later wave this limitation).

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 36/44

G-WAN



Content-Type Handlers

Content-Type Handlers are C scripts which let you define a custom behavior when a STATIC
FILE using a specific MIME type is requested by a client.

This feature was initially created for “FLV Pseudo-Streaming”, the ability for a Web server to
satisfy Flash Video Player requests aimed at letting users play any part of a movie without
having to download it completely:

GET “/movie.flv?start=123” // 123 is the movie.flv file's bytes offset

The Adobe Flash player requires the use of this HTTP request parameter and of an opaque
header ("FLV\x1\x1\0\0\0\x9\0\0\0\x9") that has to be sent before data.

The Apache / Lighttpd / Nginx FLV streaming modules require 130-350 lines of C code.

G-WAN's Content-Type Handler is much easier to create and to use:

#define FLV_HEAD "FLV\x1\x1\0\0\0\x9\0\0\0\x9" 

int main(int argc, char *argv[]) 
{ 
   char *query = (char*)get_env(argv, QUERY_STRING); // query: "start=200000" 

   if(memcmp(query, “start=”, sizeof(“start=”) - 1)) 
      return 200; // HTTP status (200:'OK') 
   
   http_t *head = (http_t*)get_env(argv, HTTP_HEADERS); // set HTTP bytes range 
   head->h_range_from = atol(query + sizeof("start=") - 1); // checked by G-WAN 

   // insert the FLV Header 
   http_header(HEAD_ADD | HEAD_AFTER, FLV_HEAD, sizeof(FLV_HEAD)-1, argv); 
   return 206; // HTTP status (206:'Partial Content')      
}

To  make  it  work,  you  just  have  to  copy  this  code  in  a  file  named  “flv.c”  stored  in  the
/gwan/listener/host/handlers folder and (re)start G-WAN.

Libraries

Third-party (shared *.so or *.dll) Libraries are pre-compiled code used to extend the features
made available to C servlets.

Sometimes, you may need to use closed-source resources (either for security: compiled code
is harder to alter than source code, or for licensing reasons: the source code of a feature you
really need is not available, or for convenience: features already available from the operating
system).

G-WAN lets you use the Boutell GD library to create dynamic pictures, the GNU GSL library
for scientific calculations, the Crypto library of your choice, and so on.

Two directives let you specify which libraries you want to use:

#pragma include “[path]”

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 37/44

G-WAN



lets you specify an additional path where #include files that you want to link with your
servlet should be searched.

#pragma link “[path]modulename[.ext]”

lets you specify the (static or dynamic) libraries that you want to link with your servlet. It
lets you link .c , .obj, .a/.lib and .so/.dll files (the pragma link order counts). By default, the
extension is “.obj” if none is supplied.

Any open-source, commercial, system or custom-made shared library written in your favorite
language can be used by G-WAN without modification nor dedicated interfaces.
Start with /lib and /usr/lib (SQLite is already there).

Applets

Applets will be illustrated at a later date when real-life examples will be available.

The purpose of G-WAN applets is to give the client-side as much power as you can already
find at the G-WAN server-side.

As the C language has full-access to the low-level resources of a machine, sand-boxing will
be used to isolate the scope of Applets.

The Initialization Script

This script is run at startup before G-WAN starts listening so you have a chance to modify the
G-WAN behavior before any traffic can hit the server. 

Do whatever initialization you need to do here, like loading and attaching data or an external
database to the G-WAN US_SERVER_DATA persistent pointer. 

The list of the get_env() values that can be used from init.c is:
(other values will be ignored) 

           US_SERVER_DATA   // global server pointer for user-defined data 
           SERVER_SOFTWARE  // "Server: G-WAN" HTTP response header 
           SCRIPT_TMO       // time-out in ms running a script 
           KALIVE_TMO       // time-out in ms for HTTP keep-alives 
           REQUEST_TMO      // time-out in ms waiting for request 
           MIN_SEND_SPEED   // send rate in bytes/sec (if < close) 
           MIN_READ_SPEED   // read rate in bytes/sec (if < close) 
           MAX_ENTITY_SIZE  // maximum POST entity size 
           USE_WWW_CACHE    // enable static  cache (default: off) 
           USE_CSP_CACHE    // enable servlet cache (default: off) 
           CACHE_ALL_WWW    // load all /www in cache (default: off) 
           USE_MINIFYING    // enable JS/CSS/HTML minifying (default: off) 

Note that, unlike the optional Maintenance script (started later and run in its own thread so it
can either stop or loop forever), the init.c script MUST return to let G-WAN start listening. 

To avoid running this script, rename it to anything else than 'init.c' (ie: 'init.c_'). 

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 38/44

G-WAN



The Maintenance Script

The maintenance script has no defined purpose: you decide what it will do.

If  present  in  gwan’s  directory,  the  script  called  main.c will  be  executed  until  it  elects  to
terminate (or until G-WAN is closed).

It  can access G-WAN’s internal structures and performance counters,  like C servlets,  but
unlike servlets (or Handlers) it is not aimed at working on HTTP requests. The maintenance
script is intended to sleep when it is idle, that is, most of the time.

You can use it, for example, to run external tasks, run other scripts, backup files, send alerts,
etc. You can even use the maintenance script to run completely unrelated C programs by
using a new G-WAN instance  (./gwan -r script.c).

A fille  called  main.c__ is  provided in the  gwan folder.  Just rename this  maintenance script
example to main.c and it will show you how a maintenance script works.

Extending G-WAN further

You can use a C Servlet or an Handler (use the after_read state) to:

– redirect requests to another application server and then have G-WAN cache them,
– invoke compiled libraries (your compiled code invoked by your C script or Handler),
– call yet another script engine.

Just keep in mind that using external code will  inevitably add overhead (slow-downs) and
bugs to G-WAN.

The less you have layers of code, the safest (and fastest) your system will be.

G-WAN was created for this sole reason.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 39/44

G-WAN



V. Build Your Own Server

G-WAN was initially designed for the HTTP protocol, but the G-WAN protocol handlers let you
use G-WAN to quickly release an email or a database server.

Why would you want to do that?

G-WAN is faster and more scalable than others because of:

• a more optimized implementation (using less CPU and memory resources)
• a better designed architecture (scaling better on multicore systems)
• a taste for finding new solutions (rather than doing copy & paste).

So, by building your LDAP or XMPP server on the top of G-WAN, not only you will safe time but
your project will inherit from the qualities that makes G-WAN a better server.

Protocol Handlers

Protocol Handlers replace G-WAN's default protocol handler (HTTP). You can only have one
Protocol Handler per listener.

For more information, see the PONG.c Protocol Handler example in the distribution archive.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 40/44



Feedback

Suggestions are welcome, but as our time is limited try to follow the guidelines below:

– General questions are more appropriate on http://stackoverflow.com where people
 can answer your questions, reply, and also learn from the replies.

–    Suggestions and feedback can be sent directly to pierre( a t )trustleap( . )com

If you contact us directly, then please:

– use a relevant subject in your email so we know what you want,

– please go straight to the point and give a reproductible example,

– be kind: there is always room for enhancements in a program.

If many software vendors do not let you contact them (or do it in a way that defeats its purpose), there
is a reason: this is a very time-consuming process.

The only way to keep this service available is to respect its constraints: like you, I have another job.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 41/44

http://stackoverflow.com/


Usage Terms and Conditions

These terms and conditions govern the distribution, licensing and delivery of the G-WAN software
product to you by TrustLeap.

BY ACCEPTING DELIVERY OF THE PRODUCTS AND SERVICES DESCRIBED ON TRUSTLEAP’S WEB
SITE OR OTHER TRUSTLEAP’S DOCUMENTATION, USER AGREES TO BE BOUND BY AND ACCEPTS
THESE TERMS AND CONDITIONS OF USE UNLESS CUSTOMER AND TRUSTLEAP HAVE SIGNED A
SEPARATE AGREEMENT, IN WHICH CASE THE SEPARATE AGREEMENT WILL GOVERN.

These  Terms  constitute  a  binding  contract  between  user  and  TrustLeap.  User  acknowledges
agreement  and acceptance of  these Terms by making installing  the software.  These Terms may
change without prior notice.

We reserve the right to make adjustments to distribution terms, products and service offerings for
reasons including, but not limited to, changing market conditions. We make every effort to ensure the
accuracy  of  the  information  available  on  our  web  site.  However,  the  documents  and  graphics
published  on  this  site  may  contain  technical  inaccuracies  or  typographical  errors.  We  make  no
representations about the suitability of the information and graphics presented on this site. All such
documents and graphics are provided “as is” without warranty of any kind.

Restrictions on Use

“Modifications”  means  any  addition,  alteration  or  deletion  from the  original  files  distributed  by
TrustLeap.

TrustLeap  hereby  grants  you  a  world-wide,  royalty-free,  non-exclusive  license  to  copy  and
distribute the binary code versions of G-WAN at the condition no Modifications are made either to
the files made available to you by TrustLeap.

“Response  header”  is  the  part  of  the  response  message  output  by  the  G-WAN  Web server,
containing but not limited to, header fields for date, content-type, server identification and cache
control.

“Server identification field” means the field in the response header which contains the text “Server:
G-WAN/x.x.x” where “x.x.x” is the program version number.

You agree not to remove or modify the server identification field contained in the response header.

In  consideration  for  the  license  granted  by  TrustLeap  to  you,  you  may  promote  G-WAN  by
displaying  the  G-WAN  ‘powered’  logo  http://gwan.com/imgs/trustleap_pw.gif in  marketing  and
promotional materials such as the home page of your Web site, other Web pages or any other
document.  You also agree that  TrustLeap may identify  your  organization  as a G-WAN user  in
conjunction with its own marketing efforts.

This agreement will terminate immediately and without further notice if you fail to comply with any
provision of this agreement. Upon termination, You agree to uninstall or destroy all copies of the G-
WAN files.

Distribution

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 42/44

http://gwan.com/imgs/trustleap_pw.gif


Provided that you do not modify the files of the distribution archive you are hereby licensed to
make as many copies of the software and documentation as you wish; give exact copies of the
original version to anyone; and distribute the software and documentation in its unmodified form via
electronic means.

There is no charge for any of the above.

You  are  specifically  prohibited  from  charging,  or  requesting  donations,  for  any  such  copies,
however made.

Obtaining the Latest Version

Before distributing G-WAN please verify that  you have the latest  version.  The latest version is
always available on our website http://trustleap.ch/

Suggested One Line Program Description

G-WAN is a Web Application Server with ‘edit & play’ C servlets

Suggested Description

G-WAN is a Web server and an application server with C servlets and the whole takes 150 KB of
code in addition to be far faster than other available Web servers.

C servlets are ‘edit & play’ scripts that let you use the power of C with the convenience of scripts.
G-WAN is free for all. Feel free to distribute it around you!

Requirements

G-WAN Requires Linux (32-bit or 64-bit)

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 43/44

http://trustleap.ch/


Copyright notice

G-WAN is (c) Copyright 2007-2013 TrustLeap, all Rights Reserved. TrustLeap is the security division
of TWD Industries AG. Additional copyright notices and license terms applicable to portions of the
Software are set  forth in  the  http://trustleap.ch/thirdpartylicenses.pdf  document.  Trustleap and G-
WAN are registered brands that  belong to TWD Industries AG. Other mentioned trademarks and
brands are the property of their respective owners.

Disclaimer and Legal Information

NO LICENSE, EXPRESS OR IMPLIED, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN TRUSTLEAP’S TERMS AND CONDITIONS OF LICENSING FOR
SUCH PRODUCTS, TRUSTLEAP ASSUMES NO LIABILITY WHATSOEVER, AND TRUSTLEAP DISCLAIMS
ANY  EXPRESS  OR  IMPLIED  WARRANTY,  RELATING  TO  LICENSING  AND/OR  USE  OF  TRUSTLEAP
PRODUCTS  INCLUDING  LIABILITY  OR  WARRANTIES  RELATING  TO  FITNESS  FOR  A PARTICULAR
PURPOSE,  MERCHANTABILITY,  OR  INFRINGEMENT  OF  ANY  PATENT,  COPYRIGHT  OR  OTHER
INTELLECTUAL PROPERTY RIGHT.
UNLESS  OTHERWISE  AGREED  IN  WRITING  BY  TRUSTLEAP,  TRUSTLEAP  PRODUCTS  ARE  NOT
DESIGNED NOR  INTENDED FOR ANY APPLICATION IN  WHICH  THE  FAILURE  OF  THE  TRUSTLEAP
PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

TrustLeap may make changes to specifications and product descriptions at any time, without notice.
TrustLeap shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes. The information here is subject to change without notice. The products described in this
document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications.

© 2007 - 2013 TrustLeap® / Global-WAN®    –    User’s manual 44/44


	User’s Manual
	This manual has been published to help users understand and use the design and features of the G-WAN application server.
	For comments and suggestions, please contact the authors at http://gwan.ch/
	G-WAN powers the TrustLeap Global-WAN security Cloud http://trustleap.ch/
	Table of Contents
	Why G-WAN?
	Productivity vs. Performance
	Summary
	I. The web server
	Installation and configuration
	/ gwan / 0.0.0.0_8080 / #0.0.0.0 / www for HTML and image files
	| | | / logs for log files
	| listening on this | / handlers for Handlers (Chapter 3)
	| interface (any) and | / csp for C scripts (Chapter 2)
	| port number 8080 | / cert for SSL certificates
	| |
	| Host name (like domain.com)
	where the gwan or IP address (like 192.168.2.4)
	executable is (one “#”-prefixed root host and
	located several “$”-prefixed virtual hosts)
	listener 1: / gwan / 192.168.2.4_80 / #trustleap.ch (root host)
	/ $gwan.ch (virtual host)
	listener 2: / gwan / 192.168.4.8_80 / #trustleap.com (root host)
	/ $gwan.com (virtual host)

	Host Aliases
	/ gwan / 192.168.2.4_80 / #gwan.ch (root host)
	/ #gwan.ch:gwan.com (alias)
	/ #gwan.ch:trustleap.ch (alias)
	/ #gwan.ch:trustleap.com (alias)
	/ gwan / 192.168.2.4_80 / #gwan.ch (root host)
	/ $forum.gwan.ch (virtual host)
	/ $forum.gwan.ch:forum.gwan.com (alias)
	/ gwan / 192.168.2.4_80 / #1.2.3.4 (root host)
	/ #1.2.3.4:gwan.ch (alias)
	/ #1.2.3.4:gwan.com (alias)
	/ #1.2.3.4:trustleap.ch (alias)
	/ #1.2.3.4:trustleap.com (alias)

	HTTP Authentication
	“acl”: {
	“roles”: [
	{“name”:”admin”, “description”:”full-access to all”},
	{“name”:”guest”, “description”:”restricted-access to all”}
	]
	“rights”: [
	{“uri”:”/?auth_digest”, “auth”:”DIGEST”, “method”:”*”, “role”:”admin”},
	{“uri”:”/?auth_basic”, “auth”:”*”, “method”:”GET”, “role”:”guest”}
	]
	“users”: [
	{“name”:”paul”, “role”:”admin”, “HA1”:”a34b...78d1”},
	{“name”:”tom”, “role”:”guest”, “HA1”:”962f...eb51”}
	]
	}
	Application: shopping
	“shop_admin”
	“shop_guest”
	Application: accounting
	“accnt_admin”
	“accnt_guest”

	Log files
	Command-line options
	Web Site Optimization (HTML, CSS, Javascript, and pictures)
	// In the CSS file:
	.extern { background:url("../imgs/extern.gif") no-repeat right; }becomes (the url link is kept for the inept MS Internet Explorer):
	.extern { background:url(...)
	*background:url("../imgs/extern.gif") no-repeat right; }
	// In the HTML file, both are invoked as follows:
	<a class="extern" href=”http://gwan.ch/”>gwan.ch</a>
	// In the CSS file:
	.clip { position: absolute; top: 0; left: 0; }
	.clipw { position: relative; }
	.loan_1 { clip:rect(0 437px 185px 0); } // rect(y1, x2, y2, x1)
	.loan_10{ clip:rect(0 874px 185px 437px); left: -437px; } // etc.
	// In the HTML file, absolute position on a page:
	<img src="imgs/loan_lan.png" alt="Loan" class="clip loan_1">
	// In the HTML file, relative positioning (following text flow):
	<div class="clipw" style="height: 185px; width: 437px;">
	<img src="imgs/loan_lan.png" alt="Loan" class="clip loan_1">
	</div>

	Supported HTTP features
	Supported MIME types
	Updating static contents
	Updating servlets (C, C++, etc.)
	Default HTML CSS style sheet and HTTP Errors CSS style
	“100 Continue”
	“101 Switching Protocols”
	“102 HTTP Processing”
	“200 OK”
	“201 Created”
	“202 Accepted”
	“203 Non-Authoritative Information”
	“204 No Content”
	“205 Reset Content”
	“206 Partial Content”
	“207 Webdav Multi-status”
	“300 Multiple Choices”
	“301 Moved Permanently”
	“302 Found”
	“303 See Other”
	“304 Not Modified”
	“305 Use Proxy”
	“307 Temporary Redirect”
	“400 Bad Request”
	“401 Unauthorized”
	“402 Payment Required”
	“403 Forbidden”
	“404 Not Found”
	“405 Method Not Allowed”
	“406 No Acceptable”
	“407 Proxy Authentication Required”
	“408 Request Time-out”
	“409 Conflict”
	“410 Gone”
	“411 Length Required”
	“412 Precondition Failed”
	“413 Request Entity Too Large”
	“414 Request-URI Too Large”
	“415 Unsupported Media Type”
	“416 Requested range not satisfiable”
	“417 Expectation Failed”
	“422 Unprocessable Entity”
	“423 Locked”
	“424 Failed Dependency”
	“425 No Matching Vhost”
	“426 Upgrade Required”
	“449 Retry With Appropriate Action”
	
	“500 Internal Server Error”
	“501 Not Supported”
	“502 Bad Gateway”
	“503 Service Unavailable”
	“504 Gateway Time-out”
	“505 HTTP Version not supported”
	“506 Variant also varies”
	“507 Insufficient Storage”
	“510 Not Extended”

	Disabling Directory Listing
	Enabling in-memory Caching
	Enabling or Disabling Timeouts, POST entity size, etc.

	II. Setting-up an IDE.
	sudo apt-get install gedit-plugins

	III. Application Server: Dynamic contents
	Your first C servlet: “301 moved permanently”
	int main(int argc, char *argv[])
	{
	xbuf_t *reply = get_reply(argv); // get a pointer on the server reply buffer
	“HTTP/1.1 301 Moved Permanentlyrn”
	int main(int argc, char *argv[])
	{
	xbuf_t *reply = get_reply(argv); // pointer on server reply buffer
	static char szURI[] = ”new.html”; // new location
	xbuf_xcat(reply,
	”<html><head><title>Redirect</title></head>”
	“<body>Click <a href=”%s”>here</a>.</body></html>”,
	szURI);
	return 301; // return an HTTP code (301:’Moved’)
	}
	int main() // status code 401 means ‘Unauthorized’
	{
	… // do whatever you need to filter connections
	Return 401; // gwan uses '401' to build headers and an HTML reply
	}
	// specify a MIME type so we don't have to build custom HTTP headers
	char *mime = (char*)get_env(argv, REPLY_MIME_TYPE);
	// note that we setup the FILE EXTENTION, not the real MIME type:
	mime[0] = '.'; mime[1] = 'g'; mime[2] = 'i'; mime[3] = 'f'; mime[4] = 0;

	Sending non-HTTP Replies (JSON, etc.)
	Dynamic buffers
	Getting GET/POST parameters
	unsigned int i = 0;
	while(i < argc)
	{
	xbuf_xcat(reply, "argv[%u] '%s'<br>", i, argv[i]);
	i++;
	}

	Getting server “environment” variables
	REQUEST = 0, // char *REQUEST; // "GET / HTTP/1.1rn..."
	int *pDN_SPEED = (int*)get_env(argv, DOWNLOAD_SPEED);
	if(pDN_SPEED) // check that we got a pointer
	*pDN_SPEED = 2; // allow 2,048 bytes per second
	CC_BYTES_IN // unsigned long long
	CC_BYTES_OUT // unsigned long long
	CC_BYTES_INDAY // unsigned long long
	CC_BYTES_OUTDAY // unsigned long long
	CC_ACCEPTED // unsigned int // total number of TCP connections
	CC_CLOSED // unsigned int // total number of TCP connections
	CC_REQUESTS // unsigned int // total number of requests
	CC_HTTP_REQ // unsigned int // number of HTTP requests
	CC_CACHE_MISS // unsigned int // requests not satisfied by the cache
	CC_ACPT_TMO // unsigned int // attack: connection without request
	CC_READ_TMO // unsigned int // attack: partial request received
	CC_SLOW_TMO // unsigned int // attack: request sent too slowly
	CC_SEND_TMO // unsigned int // attack: reply fetched too slowly
	CC_CSP_REQ // unsigned int // number of Servlet requests
	CC_STAT_REQ // unsigned int // number of Statistics requests
	CC_HTTP_ERR // unsigned int // number of HTTP errors
	CC_EXCEPTIONS // unsigned int // number of Servlet faults
	CC_BYTES_INDAY // u64 // number of bytes received today
	CC_BYTES_OUTDAY // u64 // number of bytes sent today
	US_REQUEST_DATA = 200, // Request-wide pointer

	Template Engines
	<p><!--time--><br><!--ip--><br></p>

	The G-WAN Key-Value Store
	Using Persistence Pointers
	// get the Virtual Host persistent pointer
	void **ptr = (void**)get_env(argv, US_VHOST_DATA);
	// just an example of what can be done
	typedef struct hive_s
	{
	kv_t *my_kv_store; // yep, G-WAN has one!
	void *my_whatever;
	void *my_sql_persistent_connection;
	} hive_t;
	if(!*ptr) // if the pointer has never been used, attach our structure
	*ptr = (void*)malloc(sizeof(hive_t));
	if(*ptr)
	(*ptr)->my_whatever = strdup(“I want to remember this”);

	Making Blocking BSD Socket Calls Run Asynchronously
	Putting it all together
	This page was generated in 0.01 ms.
	(on a 3GHz CPU 1 millisecond = 3,000,000 CPU clock cycles)
	weighttp -n 1000000 -c 100 -t 4 -k -H “Accept-Encoding: gzip” 
	“http://10.10.2.4:80/?loan&name=Eva&amount=10000&rate=3.5&term=10”

	Additional functions
	“Pretty” URLs for Dynamic content generation
	RESTFUL Web services
	GET /?forum&listuser=Eva (not RESTFUL: query, parameters)
	GET /forum/users/Eva (OK: GET tree-like)
	GET /?adduser&name=Robert (not RESTFUL, use POST to create)
	POST /forum/users HTTP/1.1 (OK, use PUT to update data)
	Host: gwan.ch
	Content-Type: application/json
	{ “user”: { “name”:”Eva” } }
	GET /?loan.c&name=Eva&amount=10000&rate=3.5&term=10
	GET /'loan.c/name/Eva/amount/10000/rate/3.5/term/10
	GET /'loan.c/name=Eva/amount=10000/rate=3.5/term=10

	Caching, Expires Header
	http://127.0.0.1/?servlet&arg1=123&arg2=456
	// note: no starting ‘/’ in the virtual path
	static char path[] = ”tools/counter.html”; // a ‘virtual’ path
	int expire = 0; // 0:never
	if(cacheadd(argv, path, reply->ptr, reply->len, 200, expire) < 0)
	error(); // out of memory
	return 200; // return an HTTP code (200:’OK’)

	HTTP Compression (gzip and deflate)
	Scripts execution errors, crashes and debugging
	1. void crash() { *((int*)(0))=0xBADC0DE; } // write access violation
	2. int main () { crash(); return 200; }
	Exception: c0000005 Write Access Violation
	Address: 06d3b413
	Access Address: 00000000
	
	Registers: EAX=0badc0de CS=001b EIP=06d3b413 EFLGS=00010246
	EBX=00000000 SS=0023 ESP=0166df34 EBP=0166df3c
	ECX=00000000 DS=0023 ESI=00000104 FS=003b
	EDX=0166fc58 ES=0023 EDI=0166f47c CS=001b
	
	Call chain:(line) PgrmCntr(EIP) RetAddress FramePtr(EBP) StackPtr(ESP)
	crash(): 1 06d3b413 06d3b4a6 0166df3c 0166df34
	main(): 2 06d3b4a6 0042d1ea 0166df64 0166df34
	
	Servlet: csp/crash.c
	Query : /?crash.c (may be useful to reproduce the error)
	Client : 127.0.0.1 (may be useful to identify recurring offenders)
	

	G-WAN execution errors, crashes and debugging
	Fri, 28 Oct 2010 09:11:46 GMT: start
	Fri, 28 Oct 2010 09:11:51 GMT: clean stop
	[Thu, 28 Oct 2010 10:25:16 GMT] * child normal exit(3) exit code
	[Sat, 28 Oct 2010 14:34:07 GMT] * child clean stop Ctrl+C, gwan -k
	[Sat, 28 Oct 2010 16:52:43 GMT] * child abort(11) 11 : SIGSEGV
	System Uptime: 01 day(s) 00 month(s) 00 year(s) 12:32:44
	Parent Uptime: 01 day(s) 00 month(s) 00 year(s) 10:40:40
	Child Uptime: 01 day(s) 00 month(s) 00 year(s) 10:40:40
	fork: 1 (times parent started a child)

	Web Applications Security

	IV. Extending the Joy
	A word about interfaces
	Servlets
	Connection Handlers
	switch(ip_range) {
	case x: return 0; // close connection
	case y: return 1; // build reply based on created URL
	case z: return 2; // send reply provided in reply buffer
	default: return 255; // continue normally with current data
	}
	switch(choice) {
	case x: return 0; // close connection
	case y: return 1; // read more data from client
	case z: return 2; // send reply provided in reply buffer
	default: return 255; // continue normally with current data
	}
	switch(choice) {
	case x: return 0; // close connection
	case z: return 2; // send reply provided in reply buffer
	default: return 255; // continue normally with current data
	}
	switch(choice) {
	case x: return 0; // close connection
	case z: return 2; // send reply provided in reply buffer
	default: return 255; // continue normally with current data
	}
	switch(choice) {
	case x: return 0; // close connection (do not send)
	default: return 255; // continue normally with current data
	}
	Int init(char *argv[], int argc);
	int main(char *argv[], int argc);
	int clean(char *argv[], int argc);
	int init(int argc, char *argv[])
	{
	u32 *states = (u32*)get_env(argv, US_HANDLER_STATES);
	*states = (1 << HDL_AFTER_ACCEPT)
	| (1 << HDL_BEFORE_PARSE)
	| (1 << HDL_AFTER_WRITE)
	| (1 << HDL_HTTP_ERRORS); // this one is new
	return 0; // >= 0:success
	}

	Content-Type Handlers
	#define FLV_HEAD "FLVx1x1000x9000x9"
	int main(int argc, char *argv[])
	{
	char *query = (char*)get_env(argv, QUERY_STRING); // query: "start=200000"
	if(memcmp(query, “start=”, sizeof(“start=”) - 1))
	return 200; // HTTP status (200:'OK')
	
	http_t *head = (http_t*)get_env(argv, HTTP_HEADERS); // set HTTP bytes range
	head->h_range_from = atol(query + sizeof("start=") - 1); // checked by G-WAN
	// insert the FLV Header
	http_header(HEAD_ADD | HEAD_AFTER, FLV_HEAD, sizeof(FLV_HEAD)-1, argv);
	return 206; // HTTP status (206:'Partial Content')
	}

	Libraries
	#pragma include “[path]”
	#pragma link “[path]modulename[.ext]”

	Applets
	The Initialization Script
	US_SERVER_DATA // global server pointer for user-defined data
	SERVER_SOFTWARE // "Server: G-WAN" HTTP response header
	SCRIPT_TMO // time-out in ms running a script
	KALIVE_TMO // time-out in ms for HTTP keep-alives
	REQUEST_TMO // time-out in ms waiting for request
	MIN_SEND_SPEED // send rate in bytes/sec (if < close)
	MIN_READ_SPEED // read rate in bytes/sec (if < close)
	MAX_ENTITY_SIZE // maximum POST entity size
	USE_WWW_CACHE // enable static cache (default: off)
	USE_CSP_CACHE // enable servlet cache (default: off)
	CACHE_ALL_WWW // load all /www in cache (default: off)
	USE_MINIFYING // enable JS/CSS/HTML minifying (default: off)

	The Maintenance Script
	Extending G-WAN further

	V. Build Your Own Server
	Feedback
	Usage Terms and Conditions
	Copyright notice

